Smk Informatika PESAT Bogor

Jl. Poras No. 7 Kota Bogor, SINDANG BARANG LOJI BOGOGOR BARAT - KOTA BOGOR Telp. (0251)834622.

Kegiatan membaca al-qur'an bersama

Kegiatan ini biasa dilakukan setelah shalat dzuhur berjamaah dan dilakukan setelah bubaran sekolah.

Kegiatan upacara

Biasa dilakukan setiap hari kamis.

kegiatan Birull Walidain atau taat kepada orang tua.

Kegiatan ini salah satu kegiatan rutin tahunan yang salah satunya bertujuan untuk menjalin komunikasi batin antara para siswa dan orangtua murid.

Kegiatan buka puasa bersama

Kegiatan ini biasa dilakukan setiap bulan ramadan atau juga pada hari senin dan kamis di bulan-bulan lain

Senin, 27 Februari 2012

Matriks

Matriks adalah kumpulan bilangan berbentuk persegi panjang yang disusun menurut baris dan kolom. Bilangan-bilangan yang terdapat di suatu matriks disebut dengan elemen atau anggota matriks. Dengan representasi matriks, perhitungan dapat dilakukan dengan lebih terstruktur. Pemanfaatannya misalnya dalam menjelaskan persamaan linier, transformasi koordinat, dan lainnya. Matriks seperti halnya variabel biasa dapat dimanipulasi, seperti dikalikan, dijumlah, dikurangkan dan didekomposisikan.
A =
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
\end{bmatrix}
\!

Penjumlahan dan pengurangan matriks

Penjumlahan dan pengurangan matriks hanya dapat dilakukan apabila kedua matriks memiliki ukuran atau tipe yang sama. Elemen-elemen yang dijumlahkan atau dikurangi adalah elemen yang posisi atau letaknya sama.
a_{ij} \pm b_{ij} = c_{ij}\!
atau dalam representasi dekoratfinya

\begin{bmatrix}
{3} & {4} \\
{6} & {5} \\

\end{bmatrix}
\!

\begin{bmatrix}
(a_{11} \pm b_{11}) & (a_{12} \pm b_{12}) & (a_{13} \pm b_{13}) \\
(a_{21} \pm b_{21}) & (a_{22} \pm b_{22}) & (a_{23} \pm b_{23}) \\
\end{bmatrix}
=
\begin{bmatrix}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
\end{bmatrix}
\!

Perkalian Skalar

Matriks dapat dikalikan dengan sebuah skalar.
\lambda\cdot A := (\lambda\cdot a_{ij})_{i=1, \ldots , m; \ j=1, \ldots , n}
Contoh perhitungan :
5 \cdot
  \begin{pmatrix}
    1 & -3 & 2 \\
    1 &  2 & 7
  \end{pmatrix}
  =
  \begin{pmatrix}
   5 \cdot 1 & 5 \cdot (-3) & 5 \cdot 2 \\
   5 \cdot 1 & 5 \cdot   2  & 5 \cdot 7
  \end{pmatrix}
  =
  \begin{pmatrix}
    5 & -15 & 10 \\
    5 & 10  & 35
  \end{pmatrix}

Perkalian matriks

Matriks dapat dikalikan, dengan cara tiap baris dikalikan dengan tiap kolom, lalu dijumlahkan pada baris yang sama.
 c_{ij}=\sum_{k=1}^m a_{ik}\cdot b_{kj}
Contoh perhitungan :


  \begin{pmatrix}
    1 & 2 & 3 \\
    4 & 5 & 6 \\
  \end{pmatrix}
  \cdot
  \begin{pmatrix}
    6 & -1 \\
    3 & 2 \\
    0 & -3
  \end{pmatrix}
  =
  \begin{pmatrix}
     1 \cdot 6  +  2 \cdot 3  +  3 \cdot 0 &
     1 \cdot (-1) +  2 \cdot 2 +  3 \cdot (-3) \\
     4 \cdot 6  +  5 \cdot 3  +  6 \cdot 0 &
     4 \cdot (-1) +  5 \cdot 2 +  6 \cdot (-3) \\
  \end{pmatrix}
  =
  \begin{pmatrix}
    12 & -6 \\
    39 & -12
  \end{pmatrix}

Invers Dan Determinan Matriks


Matriks 3x3
Matriks 3x3
Mencoba memenuhi permintaan dari sobat Bryan untuk posting tentang invers dan determinan matriks, maka pada postingan kali ini akan mencoba membahas sedikit materi yang berkaitan dengan invers dan determinan matriks.
Matriks merupakan susunan bilangan-bilangan berbentuk persegi atau persegi panjang yang diatur menurut baris dan kolom tertentu. Matriks dinotasikan dengan huruf kapital. Jika m adalah banyaknya baris dari matriks A, dan n adalah banyaknya kolom dari matriks A, maka matriks A mempunyai ordo m \times n, atau ditulis A_{m\times n}.
A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & \cdots &\vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}

1. Invers Matriks

Jika A dan B adalah matriks persegi, dan berlaku A \cdot B = B \cdot A = I maka dikatakan matriks A dan B saling invers. B disebut invers dari A, atau ditulis A^{-1}. Matriks yang mempunyai invers disebut invertible atau matriks non singular, sedangkan matriks yang tidak mempunyai invers disebut matriks singular.
Untuk mencari invers matriks persegi berordo 2×2, coba perhatikan berikut ini.
Jika A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} dengan ad - bc \neq 0, maka invers dari matriks A (ditulis A^{-1}) adalah sebagai berikut:
A^{-1} = \frac {1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
Jika ad - bc = 0 maka matriks tersebut tidak mempunyai invers, atau disebut matriks singular.
Sifat-sifat matriks persegi yang mempunyai invers:
  • (A \cdot B)^{-1} = B^{-1} \cdot A^{-1}
  • (B \cdot A)^{-1} = A^{-1} \cdot B^{-1}
  • (A^{-1})^t =(A^{t})^{-1}
Contoh: Tentukan invers dari matriks berikut!
\begin {array} {lcl} A & = & \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} \\ A^{-1} & = & \frac {1}{2 \times 3 - 1 \times 5} \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \\ & = & \frac {1}{6-5} \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \\ & = & \frac {1}{1} \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \\ A^{-1} & = & \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}\end{array}

2. Determinan Matriks

Syarat suatu matriks dapat dicari determinannya adalah matriks tersebut harus merupakan matriks persegi. Jika A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, maka rumus untuk mencari determinan matriks berordo 2×2:
det A = \begin{vmatrix} A \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc
Sedangkan untuk mencari determinan matriks berordo 3×3 menggunakan aturan Sarrus.
A_{3 \times 3} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{2n}\\ a_{31} & a_{32} & a_{33} \end{bmatrix}
\begin{vmatrix} A \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{2n}\\ a_{31} & a_{32} & a_{33} \end{vmatrix} \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{matrix}
\begin{array} {lcl} \begin{vmatrix} A \end{vmatrix} = && a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ & - & a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} \end{array}
Contoh: Tentukan determinan dari matriks berikut!
A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}
\begin{vmatrix} A \end{vmatrix} = \begin{vmatrix} 3 & 1 \\ 5 & 2 \end{vmatrix} = 3 \times 2 - 1 \times 5 = 6 - 5 = 1
B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 4\\ 1 & 4 & 3 \end{bmatrix}
\begin{vmatrix} B \end{vmatrix} = \begin{vmatrix}1 & 2 & 3 \\ 1 & 3 & 4\\ 1 & 4 & 3 \end{vmatrix} \begin{matrix} 1 & 2\\ 1 & 3 \\ 1 & 4 \end{matrix}
\begin{array} {lcl} \begin{vmatrix} B \end{vmatrix} & = & 1.3.3 + 2.4.1 + 3.1.4 - 1.3.3 - 4.4.1 - 3.1.2 \\ & = & 9 + 8 + 12 - 9 - 16 - 6 \\ & = & -2 \end{array}

Logika Matematika

1) Pernyataan atau kalimat
Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah.

Ada dua jenis pernyataan matematika, yaitu :
Kalimat tertutup, merupakan pernyataan yang nilai kebenarannya sudah pasti.
Contoh :

a) 5 x 4 = 20 (pernyataan tertutup yang benar)
b) 5 + 4 = 20 (pernyataan tertutup yang salah)
Kalimat terbuka, merupakan pernyataan yang kebenarannya belum pasti.
Contoh :
a : Ada daun yang berwarna hijau
b : Gula putih rasanya manis
2) Ingkaran Pernyataan atau negasi
Ingkaran atau negasi suatu pernyataan adalah pernyataan yang menyangkal pernyataan yang diberikan. Ingkaran suatu pernyataan dapat dibentuk dengan menambah “Tidak benar bahwa ...” di depan pernyataan yang diingkar. Ingkaran pernyataan adalah ~ p.
Contoh :
Misalkan pernyataan p : Tembakau yang mengandung nikotin.
Ingkaran penyataan p adalah ~ p. Tidak benar bahwa tembakau mengandung nikotin.
Tabel kebenaran dari ingkaran
3) Pernyataan Majemuk
a. Konjungsi
Pernyataan p dengan q dapat digabung dengan kata hubung logika “dan” sehingga membentuk pernyataan majemuk “p dan q” yang disebut konjungsi. Konjungsi “p dan q” dilambangkan dengan  
b. Disjungsi
Pernyataan p dengan q dapat digabung dengan kata hubung logika “atau” sehingga membentuk pernyataan majemuk “p atau q” yang disebut disjungsi. Disjungsi p atau q dilambangkan dengan  . 
c. Implikasi
Implikasi “jika p maka q” dilambangkan dengan 
d. Biimplikasi
Biimplikasi “p jika dan hanya jika q” dilambangkan dengan .
4) Ekuivalensi Pernyataan – Pernyataan Majemuk
5) Konvers, Invers, dan Kontraposisi
Dari sebuah implikasi dapat diturunkan pernyataan yang disebut konvers, invers dan kontraposisi dari implikasi tersebut.


6) Pernyataan berkuantor dan ingkarannya

Limit Fungsi

Limit suatu fungsi merupakan salah satu konsep mendasar dalam kalkulus dan analisis, tentang kelakuan suatu fungsi mendekati titik masukan tertentu.
Suatu fungsi memetakan keluaran f(x) untuk setiap masukan x. Fungsi tersebut memiliki limit L pada titik masukan p bila f(x) "dekat" pada L ketika x dekat pada p. Dengan kata lain, f(x) menjadi semakin dekat kepada L ketika x juga mendekat menuju p. Lebih jauh lagi, bila f diterapkan pada tiap masukan yangcukup dekat pada p, hasilnya adalah keluaran yang (secara sembarang) dekat dengan L. Bila masukan yang dekat pada p ternyata dipetakan pada keluaran yang sangat berbeda, fungsi f dikatakan tidak memiliki limit.

Definisi


Fungsi pada garis bilangan riil

Bila f : R \rightarrow R terdefinisi pada garis bilangan riil, dan p, L \in R maka kita menyebut limit f ketika x mendekati p adalah L, yang ditulis sebagai:
 \lim_{x \to p}f(x) = L
jika dan hanya jika untuk setiap ε > 0 terdapat δ > 0 sehingga |x - p|< δ mengimplikasikan bahwa |f (x) - L | < ε . Di sini, baik ε maupun δmerupakan bilangan riil. Perhatikan bahwa nilai limit tidak tergantung pada nilai f (p)

Limit searah

Limit saat: x → x0+ ≠ x → x0-. Maka, limit x → x0 tidak ada.
Masukan x dapat mendekati p dari atas (kanan di garis bilangan) atau dari bawah (kiri). Dalam hal ini limit masing-masingnya dapat ditulis sebagai

 \lim_{x \to p^+}f(x) = L
atau
 \lim_{x \to p^-}f(x) = L
Bila kedua limit ini sama nilainya dengan L, maka L dapat diacu sebagai limit f(x) pada p . Sebaliknya, bila keduanya tidak bernilai sama dengan L, maka limit f(x) pada p tidak ada.
Definisi formal adalah sebagai berikut. Limit f(x) saat x mendekati p dari atas adalah L bila, untuk setiap ε > 0, terdapat sebuah bilangan δ > 0 sedemikian rupa sehingga |f(x) - L| < ε pada saat 0 < x - p < δ. Limit f(x) saat x mendekati p dari bawah adalah L bila, untuk setiap ε > 0, terdapat bilangan δ > 0 sehingga |f(x) - L| < ε bilamana 0 < p - x < δ.
Bila limitnya tidak ada terdapat osilasi matematis tidak nol.

Limit fungsi pada ketakhinggaan

Limit fungsi ini ada pada ketakhinggaan.
Bila dua unsur, ketakhinggaan positif dan negatif {-∞, +∞}, ditambahkan pada garis bilangan riil, kita dapat mendefinisikan limit fungsi pada ketakhinggaan. Dua unsur tambahan ini bukanlah bilangan, namun berguna dalam memerikan kelakuan limit pada kalkulus dan analisis.
Bila f(x) adalah fungsi riil, maka limit f saat x mendekati tak hingga adalah L, dilambangkan sebagai:
 \lim_{x \to \infty}f(x) = L,
jika dan hanya jika untuk semua ε > 0 terdapat S > 0 sedemikian rupa sehingga |f (x) - L| < εbilamana x > S.
Dengan cara yang sama, limit f saat x mendekati tak hingga adalah tak hingga, dilambangkan oleh
 \lim_{x \to \infty}f(x) = \infty,
jika dan hanya jika bila untuk semua R > 0 terdapat S > sedemikian sehingga f(x) > R bilamana x > S.