Sifat Fungsi
Dengan memperhatikan bagaimana elemen-elemen pada masing-masing himpunan A dan B yang direlasikan dalam suatu fungsi, maka kita mengenal tiga sifat fungsi yakni sebagai berikut :
1. Injektif (Satu-satu)
Misalkan fungsi f menyatakan A ke B maka fungsi f disebut suatu fungsi satu-satu
(injektif), apabila setiap dua elemen yang berlainan di A akan dipetakan pada dua elemen yang berbeda di B. Selanjutnya secara singkat dapat dikatakan bahwa f:A→B adalah fungsi injektif apabila a ≠ a’ berakibat f(a) ≠ f(a’) atau ekuivalen, jika f(a) = f(a’)
maka akibatnya a = a’.
2. Surjektif (Onto)
Misalkan f adalah suatu fungsi yang memetakan A ke B maka daerah hasil f(A) dari fungsi f adalah himpunan bagian dari B. Apabila f(A) = B, yang berarti setiap elemen di B pasti merupakan peta dari sekurang-kurangnya satu elemen di A maka kita katakan f adalah suatu fungsi surjektif atau “f memetakan A Onto B”.
3.Bijektif (Korespondensi Satu-satu)
Suatu pemetaan f: A→B sedemikian rupa sehingga f merupakan fungsi yang injektif dan surjektif sekaligus, maka dikatakan “f adalah fungsi yang bijektif” atau “ A dan B berada dalam korespondensi satu-satu”
D.Jenis – jenis Fungsi
Jika suatu fungsi f mempunyai daerah asal dan daerah kawan yang sama, misalnya D, maka sering dikatakan fungsi f pada D. Jika daerah asal dari fungsi tidak dinyatakan maka yang dimaksud adalah himpunan semua bilangan real (R). Untuk fungsi-fungsi pada R kita kenal beberapa fungsi antara lain sebagai berikut.
a. Fungsi Konstan
b. Fungsi Identitas
c. Fungsi Linear
d. Fungsi Kuadrat
e. Fungsi Rasional
0 komentar:
Posting Komentar